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Abstract
Chronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor
development. Macrophages, mesothelial precursor cells, cytokines, and growth factors accumulated in the peritoneal lavage.
Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled
by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and
tumor. Inflamed tissue showed increased levels of single-nucleotide variations, with an RNA-editing signature, which were
even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic
mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice
supporting the role of the environment in tumor progression.

Introduction

The association of exposure to asbestos with development
of mesothelioma has been demonstrated in the seminal
experimental work of Wagner in the 1960s [1]. In 1987,
Kane and co-workers [2] observed that already a single dose
of asbestos fibers damages the mesothelium tissue and sti-
mulates regeneration with the additional recruitment of
macrophages to the site of damage and were the first to
propose that persistent tissue injury leads to an inflamma-
tory and regenerative response, which subsequently paves
the way to mesothelioma development.

Tumor development greatly depends on the evasion from
the immune surveillance. Tumor cells escaping the immune
defense is enhanced by the induction of an immunosup-
pressive tumor microenvironment [3]. For example, the
differentiation and activation of antigen-presenting dendritic
cells, which are the key initiators of the adaptive immune
responses [4], are inhibited by signals, e.g., vascular
endothelial growth factor (VEGF), present in the tumor
microenvironment [5]. Tumor-associated macrophages
polarized to a “M2” state [6] as well as a heterogeneous
population of myeloid-derived suppressor cells, are potent
suppressors of antitumor immunity [7]. Others and we have
previously observed that blockade of immunosuppressive
signals enhances immunity against mesothelioma [8–12].
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This study assesses the loss of homeostasis in the
mesothelial environment during tumor development after
exposure to asbestos. Since mesothelioma development

after intraperitoneal exposure to asbestos has been widely
accepted as a bona fide surrogate to investigate
mesothelium-dependent reaction, we used this model to
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investigate in-depth how perturbation of homeostatic con-
trol leads to tumor development. Nf2+/− mice on a C57Bl/
6J genetic background were used for several reasons
including the observation that tumor that develop in Nf2
+/− mice exposed to asbestos show common genomic
alterations with human mesothelioma and loss of NF2
function has a driver role in mesothelioma development
[13–16], and C57Bl/6J mice being widely used in func-
tional studies.

Results

Exposure to asbestos alters the profile of cell
populations and signaling molecules in the
peritoneal cavity in non-tumor bearing mice

C57Bl/6J Nf2+/− mice were exposed eight times to cro-
cidolite (blue asbestos) every 3 weeks then were sacrificed
33 weeks after first crocidolite exposure in order to have the
possibility to investigate pre-cancer and cancer stages (Fig.
1a). In mesothelioma-free mice, the population of CD68/
F480 macrophages in the peritoneal lavage was five-fold
higher compared to sham-exposed mice (Fig. 1b). Both, the
numbers of T and B cells (Fig. 1b) in the peritoneal lavage
of crocidolite-treated mice were significantly decreased.

Besides macrophage recruitment after tissue damage,
free-floating mesothelial-like cells were shown to be
incorporated into peritoneal wound surfaces and to con-
tribute to the regeneration of the damaged mesothelium
[17]. This population is characterized as mesothelin+ (Msln
+)-bone marrow-derived progenitor cells [18]. During
embryonic development, a mesothelial precursor population
has been identified as Msln+ CD105low, CD90high, CD44low,
and CD34high [19]. Accordingly, we observed that CD90
+CD34+Msln+ cells paralleled the CD68/F480 cell profile
(Fig. 1b). In the spleen a significant increase of T cells, both
CD4 and CD8, was observed (Fig. 1c).

In order to explore mechanisms putatively involved in
the observed changes, the content of different inflammatory
cytokines (IL-6, IL-10, IFNγ), myeloid chemoattractant
chemokines (CCL-2, CCL5, CXCL1), and growth factors
modulating the differentiation of myeloid cells (G-CSF,
GM-CSF) or vessel growth (VEGF), was measured in the
peritoneal lavage (Fig. 2). Levels were increased in
crocidolite-exposed mice paralleling the profile change
observed for the CD68/F480 and mesothelial precursor cell
populations. A strong correlation was observed between
CCL2 and IL-6 levels (r= 0.7, p < 0.0001) consistent with
the known reciprocal regulation of these two cytokines [20].

RNA-seq transcriptome profiling

Tumors showing spindled morphology and benign meso-
thelial proliferations cells that had grown in asbestos-
exposed mice stained positive for podoplanin, WT-1,
mesothelin, vimentin, and cytokeratin (Supplementary
Figure 1).

We collected scraped mesothelium (Fig. 3a) and per-
formed RNA-seq to identify gene expression changes dur-
ing mesotheliomagenesis. We analyzed three groups by
RNA-seq: sham, age-matched crocidolite-exposed, and age-
matched crocidolite-exposed with observable tumors.
Among those groups we performed differential expression
analysis between crocidolite-exposed and sham, and
detected 5976 differentially expressed genes (p < 0.01,
false-discovery-rate (FDR) < 0.022). Additionally we
assessed the expression differences between crocidolite
exposed with tumors and crocidolite exposed, and identified
8416 genes (p < 0.01, FDR < 0.017). In Fig. 3b, we show a
heatmap of the significant genes where we applied an
additional fold-change threshold of higher than two-fold
(2316 genes up, 84 genes down when comparing
crocidolite-exposed and sham). The crocidolite response is
dominated by an upregulation of genes. It is interesting to
note that among the 2316 genes with a positive response,
1989 have an even higher average expression in the
crocidolite-with-tumor samples as compared to the croci-
dolite samples and only 327 genes have a lower average
expression. However, this asymmetry is not generally true,
when looking at all genes significantly changed between
crocidolite with tumors and crocidolite without tumors. We
find 3014 genes with more than two-fold upregulation and
3008 genes with more than two-fold downregulation. A
total of 1234 genes of these two upregulated gene sets were
overlapping, as shown in the Venn diagram (Fig. 3c). The
commonly upregulated 1234 genes represent 53% of the
upregulated genes in the crocidolite-exposed tissue vs.
sham-exposed pool and 41% in the crocidolite-exposed
tumor vs. crocidolite-inflamed tissue pool (Fig. 3c). A

Fig.1 Exposure to asbestos alters the profile of cell populations in
peritoneal lavage. a Experimental scheme: 6–8-week-old C57Bl/6J
mice were exposed to crocidolite i.p. (400 µg/mouse) every 3 weeks
with in total eight treatments. Thirty-three weeks after initial exposure
to crocidolite mice were sacrificed to collect peritoneal lavage, blood,
and tissues. Tumor-bearing mice were sacrificed to collect tumor tis-
sue. b The lavage from crocidolite-exposed mice shows higher pro-
portions of macrophages and mesothelial precursor populations as
compared to sham-exposed mice. Flow-cytometry analysis of samples
is shown in the left panel. A significant decrease in the total number of
T and B cells was observed in the peritoneal lavage 12 weeks after last
exposure to crocidolite. c The proportion of T cells was significantly
increased in the spleen of asbestos-exposed mice. No difference for B
cells was observed in the spleen. N= 6–8 mice. Mean ± SE. *p < 0.05,
**p < 0.01, Mann–Whitney test
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functional analysis of these different responding gene
groups is discussed below.

We further looked at the number and type of base
changes in the RNA-seq data. In Fig. 3d, we show the
mutational load as determined from the strand-specific
RNA-seq read alignments. The crocidolite-exposed mice
show higher number of mutations as compared to sham
treated. After tumorigenesis, the number of mutations
was even further increased. Figure 3d shows that there is
one crocidolite non-tumor sample with a very high number
of mutations. This outlier sample has been obtained from a
mouse with no visible tumor. In gene expression analysis its
profile was intermediate between tumor and crocidolite
without tumor samples, and histological examination by
the pathologist has revealed the presence of some neoplastic
cells. Because only one sample exhibited this characteristic,
we have excluded it from further expression analysis
but included it in the base-change analysis. Excluding it
from the base-change analysis does not substantially
alter the results. When looking closer at the type of muta-
tions, we observed a significant increase of A to G muta-
tions between crocidolite and sham-treated samples.
This increase is significant in terms of absolute counts
(p= 0.005) and in terms of the relative fractions of the A to
G mutations of the total mutations (p= 0.00031) (Fig. 3e).
The A to G alterations were increased while the T to C
alterations were not, which identifies them as RNA-editing
events. Actually, none of the other mutation types showed a
significant increase neither in absolute nor in relative terms.
Even more, Fig. 3f shows that the fraction of A to G

alterations that overlaps with known A to I sites
also increases (p= 0.0012). We hypothesize that they are
the result of hydrolytic deamination of adenosine down-
stream of Adar activity [21] (I is detected as G in RNA-seq).
This is consistent with a significant 3.9-fold increase of
Adar expression in inflamed tissue compared to sham (p=
5.35E−34, FDR= 7.87E−32) and more than two-fold
increase in tumors compared to inflamed tissues (p=
2.56E−12, FDR= 1.86E−11). Intriguingly Adarb1
showed a significant more than two-fold increase in tumors
compared to inflamed tissues (p= 2.56E−12, FDR= 1.86E
−11), but its expression was not significantly changed
between sham and inflamed tissue. Analysis of TCGA
mesothelioma data revealed that high expression of
ADARB1 is associated with worst overall survival (Sup-
plementary Figure 2) supporting the idea that RNA editing
is relevant in mesothelioma as it is in other cancers. In order
to document deeper this aspect, we first identified a candi-
date RNA locus, AZIN1, in our list of edited sites, which
had already been shown to contribute to tumor growth [22].
Fisher’s exact test indicated that AZIN1 editing is sig-
nificantly (p= 0.010) enriched in samples from asbestos-
exposed animals (Supplementary Figure 3A). We then used
two different mesothelioma cell lines, SPC111 and NCI-
H226, and documented that they express both, ADAR and
ADARB1 (Supplementary Figure 3B). Both isoforms of
ADAR are expressed, p110 and p150, but p110 is more
abundant. ADAR expression is higher in SPC111 cells
compared to NCI-H226 cells while ADARB1 expression is
very low in SPC111 cells but high in NCI-H226 cells,

Fig. 2 Exposure to asbestos
alters the profile of signaling
molecules in the peritoneal
lavage. 6–8-week-old C57Bl/6J
mice were exposed to crocidolite
i.p. (400 µg/mouse) every
3 weeks for eight rounds. Thirty-
three weeks after initial exposure
to crocidolite mice were
sacrificed to collect peritoneal
lavage to determine the levels of
several cytokines, growth
factors, and chemokines. All of
them were more abundant in the
lavage from crocidolite-exposed
mice. N= 6–8 mice. Mean ± SE.
**p < 0.01, Mann–Whitney test
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demonstrating that both enzymes are expressed in meso-
thelioma. We then used a recently developed sensitive RNA
editing site-specific quantitative RT_PCR [23] to document

that silencing ADAR and ADARB1 (Supplementary
Figure 3B) results in decreased AZIN1 RNA editing (Sup-
plementary Figure 3C). Therefore, both enzymes are active
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in mesothelioma cells proving that they contribute to the
RNA editing signature.

Functional analysis of differentially expressed genes

Genes known to be upregulated during mesothelioma
development, such as Osteopontin (Spp1) and mesothelin
(Msln), were increased validating our approach (Fig. 4a). As
expected the expression of Nf2 and Bap1, tumor sup-
pressors frequently mutated in mesothelioma [24–27] were
significantly decreased during mesothelioma development
(Fig. 4b). Relative quantification of gene copy number [28]
was used on genomic DNA from a cell line established from
one tumor (RN5) compared to non-tumor cells. We con-
sidered it as valid surrogate to examine Bap1 and Nf2 copy
number changes because data could be compared to protein
levels. We observed that loss of one allele in Bap1 gene was
accompanied by decreased protein levels, while loss of the
second Nf2 allele abolished Nf2 protein expression (Sup-
plementary Figure 4A and B). Nf2 is an upstream regulator
of the Hippo signaling cascade [29], which prevents nuclear
YAP/TAZ localization and activation of transcription
enhancers activation domain (TEAD) family members [30].
Accordingly, we observed a progressive increase in nuclear
YAP localization in parallel to an increase in the pro-
liferation marker Ki-67 in benign growth and tumor tissue
from crocidolite-exposed mice (Fig. 4c).

Gene set enrichment analysis [31] of differentially
expressed genes indicated that the most significant pathway
activated in inflamed tissue compared to sham was activa-
tion of interferon-γ (Supplementary Table 1, p= 3.89E
−79), while enrichment in epithelial–mesenchymal transi-
tion (EMT) markers in tumors was the most significant
pathway in tumors compared to crocidolite-exposed
inflamed tissue (Supplementary Table 2, p= 8.92E−81).
Many of these genes were downstream of p53 activation,

replication stress, or YAP activation (Supplementary Table
3). The number of upregulated genes in the pool of YAP
activation pathway signature genes was almost doubled
between tumors and inflamed tissue (Fig. 5a). One of these
genes, Ctgf, showed increased expression in tumors, but not
in inflamed tissues (Fig. 5b), consistent with Ctgf expres-
sion being synergistically enhanced by TGFβ [32] and
enrichment of EMT markers in tumors.

Activation of developmental genes is predominant
in tumors while both inflamed mesothelial tissue
and tumor contain Arg1-positive cells

To further explore unique and common genes, we used
Gene Ontology Term Finder (http://go.princeton.edu/cgi-
bin/GOTermFinder) to find associated GO terms, and
Reduce and Visualize Gene Ontology (REVIGO) [33] to
group terms in a two-dimensional space based on semantic
similarity (Fig. 5c). While biological processes upregulated
in crocidolite-exposed tissues included cytokine production,
inflammatory response and leukocyte-mediated cytotoxi-
city, cell cycle and wound healing were upregulated in both,
crocidolite-exposed non-tumor and tumor tissues. In the
latter, Gene Ontology (GO) categories linked several genes
to developmental processes. Figure 5d shows a heatmap for
selected genes belonging to categories related to develop-
ment. Ten of the identified 38 genes are part of the
Hedgehog pathway and Ephrin/Semaphorin pathways
including Gas1, Cdon, Gli2, Smo, Sufu; Sema4f, Ephb2,
Sema3f, Sema3c, and Efnb1, consistent with TCGA data
showing that these two pathways are part of the top ten
pathways deregulated in human mesothelioma [34]. The
Hedgehog signaling pathway is essential during embryonic
mesothelial development [35] and is inactive in most adult
tissues, but increased Hedgehog signaling is observed in
mesothelioma tumors [36], especially in the sarcomatoid
histotype [27]. Five genes (Fzd8, Fzd2, Dvl2, Porcn, and
Rspo1) are part of the Wnt pathway and eight genes are part
of homeobox families: five (HoxaA1, HoxaA2, HoxA3,
HoxB2, and HoxB3) from the Hox family, which defines the
morphology of a specific body segment during embryonic
patterning and participates in tissue regeneration. The rest of
the genes are either part of the BMP/Tgf beta pathway
(Bmp1, Bmp4, Grem1, Chor, Cdh11, and Tgfi), genes
implicated in kidney development (four genes) or in the
Notch pathway (two genes). Few other genes have already
been associated with human mesothelioma such as Lif [37].
Analysis of pleural mesothelioma compared to matched
normal tissue data [38] revealed that expression of these
genes is also increased in human tumors compared to nor-
mal tissue, indicating that activation of these developmental
pathways is not species specific. Interestingly, one of the
genes with the strongest upregulation (p= 2.84E−12, FDR

Fig. 3 Transcriptome profiles reveal higher expression for thousands
of genes and an increase of RNA editing events. a Mesothelial tissue
collection by exposure of parietal mesothelium and scraping the sur-
face with a scalpel. b Heatmap of differentially expressed genes in the
two comparisons crocidolite vs. sham and crocidolite tumors vs. cro-
cidolite. The color bars at the left indicate upregulation (orange) and
downregulation (violet). The crocidolite vs. sham comparison is
dominated by genes upregulated in the crocidolite condition. c Overlap
of the differentially expressed genes (two-fold change, p < 0.01) in
both comparisons visualized as a Venn diagram. There is a substantial
overlap that originates from the fact that about 40% of the genes that
are upregulated in the crocidolite condition, show an even higher
expression in the crocidolite tumor tissue. d Number of detected single
nucleotide variations (SNV) in RNA-seq reads. e An increase of A to
G transitions is the major cause of the increased number of SNVs in
crocidolite-exposed tissues. Please note the reads are strand specific
and the reverse complement transition (T to C) is not increased. f The
proportion of A to G mutations that coincide with known A to I RNA-
editing sites increases also in the crocidolite-exposed tissues
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= 2.05E−11) in tumors compared with crocidolite-exposed
tissue was Grem1, a secreted bone morphogenetic protein
(BMP) antagonist, which has been recently described to
promote EMT in mesothelioma [39] (Fig. 5e).

Among the genes with the highest upregulation in
crocidolite-exposed tissues vs. sham-exposed, and with
further upregulation in crocidolite-induced tumor tissue
compared to crocidolite-exposed tissue was Arg1 (p=
6.83E−65, FDR= 2.98E−61, Fig. 6a). Arginase 1 is one of
the two enzymes, which hydrolyzes L-Arg to urea and L-
ornithine, the latter being the main substrate for the pro-
duction of polyamines that are required for cell cycle pro-
gression. Arginase 1 expression was also confirmed in
crocidolite-exposed tissue and tumors by immunohis-
tochemistry (Fig. 6a). The expression of Arginase 1 is

considered to be the hallmark of the “M2”-state macrophage
population, which can cause T-cell anergy [40], however it
was expressed also in some reactive mesothelial cells which
were not stained with the macrophage marker F4/80 (Sup-
plementary Figure 5). Interestingly a gene signature impli-
cated in the activation of tissue macrophage self-renewal
and embryonic stem cells [41], was upregulated in
crocidolite-exposed tissues and tumors (Fig. 6b), supporting
the hypothesis of environment-driven stimulation of plur-
ipotency potential. This observation was reinforced by
unbiased oPOSSUM analysis (http://opossum.cisreg.ca/cgi-
bin/oPOSSUM3/opossum_mouse_tca) indicating that Klf4
ranked first among the transcription factors with over-
represented binding sites in genes that were upregulated in
asbestos-induced inflamed tissue (Z-score= 46.47).

Fig. 4 Progressive deregulation
of the Hippo pathway during
mesothelioma development.
a Increased expression of Spp1
and Msln mesothelioma markers
in crocidolite-exposed mice
validates our approach. qPCR
for Spp1 and Msln expression
was performed in sham,
crocidolite-exposed mice
without malignant tumor and
tumors. Mean ± SE. N= 5–8
mice, *p < 0.05, Mann–Whitney
test. b Nf2 and Bap1 tumor
suppressors were significantly
decreased during mesothelioma
development. Gene expression
of Nf2 and BAP1 were analyzed
as in a. *p < 0.05,
Mann–Whitney test. c Nuclear
YAP and ki67 expression in
crocidolite-exposed mice.
Immunoreactivity for Ki67 and
YAP observed in benign growth
and in tumors in crocidolite-
exposed mice
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Furthermore, curated heatmaps confirmed upregulation of
molecules associated with the “M2”-polarized macrophage
such as Csf1, Csfr1, and Cd163 (Supplementary Figure 6).
Altogether, these observations suggest that the increase in
the macrophage population resulting from crocidolite
exposure is mostly due to “M2”-polarized macrophages.

Expression levels of chemokines such as Ccl2, Ccl5, and
Cxcl-1 was increased in non-tumor tissue from crocidolite-
exposed mice (Supplementary Figure 7) consistent with the
observed increase of these signaling molecules in the peri-
toneal lavage, and even higher levels were measured in
tumor tissue. In addition, we observed upregulation of other
chemokine receptors such as Ccr1, Ccr3, Ccr5, Cxcr3,
Cxcr4, Cxcr6, Cx3cr1, and their ligands (Supplementary
Figure 7). As expected, IL-1β and TNFα were significantly
upregulated (p= 3.54E−13, FDR= 7.89E−12 and p=
1.87E−18, FDR= 8.17E−17, respectively) in mesothelium
scraped from asbestos-exposed mice, compared to meso-
thelium from sham mice.

Inflamed environment favors tumor growth

Finally, in order to investigate whether inflammation
observed after asbestos exposure in non-tumor bearing mice
would affect tumor growth, tumor-free animals 49 weeks
after the first asbestos exposure were challenged with s.c.
flank injection of a dose of RN5 syngeneic cells (1 × 106)
expected to give rise to tumors only in a fraction of age-
matched recipients naïve mice. One mouse exposed to
asbestos developed a peritoneal mesothelioma and all the
other asbestos-exposed mice developed a s.c. tumor within
50 days while two naïve mice were still tumor-free 150 days
after injection of RN5 cells (Fig. 6c), supporting the concept
of mesothelial environment changes favoring tumor growth.
However, no obvious differences in tumor morphology
were noticed (Fig. 6d).

Discussion

In this study we provide strong evidence that mesothelioma
might be caused by conditions that trigger chronic inflam-
mation where activation of YAP/TAZ signaling, RNA
editing, and a tumor-promoting environment appear prior to
tumor development. The RNA editing signature down-
stream ADAR activity is suggested by A to G mutations at
known A to I sites and is consistent with its increased
expression, possibly due to interferon signaling [42].
Decreased expression of ADARB1 has been observed upon
YAP silencing in mesothelioma cells, which resulted in
decreased cell growth [43] providing a possible mechanism
behind the TCGA data associating high ADARB1 expres-
sion with worst overall survival. RNA editing by ADAR is
the most prevalent type of RNA editing and occurs mostly
in non-coding regions where inverted repeated sequences
are likely to form dsRNA structures, which functions as
substrate. It has recently attracted attention as cancer driver
for its role in cancer stem cell maintenance, possibly linked
also to reduced production of mature miRNA due the
impairment of their processing by Drosha after editing of
hairpin structures in primitive miRNA [21, 44]. Although
we could not evaluate miRNA abundance or mutations due
to the method used to extract RNA, it is worth noting that
YAP activation has been shown to decrease the activity of
Drosha [45], therefore RNA editing and YAP/TAZ activa-
tion may converge on profound modification of mature
miRNA. The progressive activation of YAP/TAZ signaling
is possibly associated with extra-cellular matrix (ECM)
remodeling since several GO terms induced by crocidolite
are associated with this process. Indeed, a signatures
revealing activation of YAP/TAZ signaling was sig-
nificantly associated to growth on high stiffness ECM [46].
YAP/TAZ signaling is functionally required for differ-
entiation of mesenchymal stem cells induced by ECM
stiffness and nuclear YAP/TAZ localization has been
associated with response to increased ECM stiffness in
several tissues [47, 48]. The progressive deregulation of the
Hippo pathway associated with YAP/TAZ activation is
consistent with previous published results on the role of
NF2 in human mesothelioma development [16], stressing
the importance of this signaling pathway in mesothelioma
growth. Interestingly, some differences in the profile of
YAP/TAZ targets in inflamed tissues vs. tumor suggest the
existence of modulation of YAP/TAZ activation [49]
including matrix remodeling in inflamed tissue or EMT
cues in tumors. This would be consistent with the observed
enrichment of EMT signature, the overexpression of Grem1
in mice tumors and Grem1 upregulation in the sarcomatoid
histotype of human mesothelioma [27]. It is also in agree-
ment with the EMT signature associated with worst

Fig. 5 Activation of developmental pathways in mesotheliomagenesis.
a Pie chart of significantly increased YAP1 target genes distribution in
inflamed tissues vs. tumor. The detailed list of genes is listed in
Supplementary Table 3. b q-PCR of Ctgf expression was performed in
sham, crocidolite-exposed mice without malignant tumor and tumors.
Mean ± SE. N= 5–8 mice. ***p < 0.005, Mann–Whitney test. c The
list of genes from each of the three categories of the Venn diagram of
Fig. 3 were subjected to GO analysis to identify enriched GO terms for
biological processes (BP). The results are shown as REVIGO scatter
plots in which similar terms are grouped in a two-dimensional space
based on semantic similarity. Each circle indicates a specific GO term
and circle sizes are indicative of how many genes are included in each
term. Colors indicate the level of significance of enrichment of the GO
term. d A curated heatmap was generated for gene sets belonging to
categories related to development and that were enriched in tumors.
Red represents increased expression. e Overexpression of Grem1 in
tumors was verified by q-PCR. Mean ± SE. N= 5–8 mice. *p < 0.05,
**p < 0.01, Mann–Whitney test
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prognosis in TCGA mesothelioma samples (Supplementary
Figure 8).

Beachy et al. [50] proposed that chronic tissue repair
activates stem cell signaling pathways to regenerate the
tissue and that oncogenic events may occur due to persistent
system stimulation, leading to the formation of a tumor. For
the time being, the cell types that proliferate upon exposure
to asbestos fibers are not known. Already in the 1980s it has
been claimed that mesothelioma originate from the trans-
formation of multipotent connective tissue stem cells that
can differentiate into most mesenchymal patterns [51]. In
MexTag mice where the SV40 T antigen (Tag) is under the
control of the mesothelin promoter and which develop
mesothelioma tumors upon exposure to asbestos fibers, Tag
is not detected in unexposed mice [52]. Mesothelin is a
target of YAP activation [53] and we observed that

mesothelin expression increased in both, inflamed meso-
thelium and tumors. This is associated with the accumula-
tion of mesothelin-expressing mesothelial precursors in the
lavage of asbestos-exposed mice, consistent with a previous
study where a mesothelin-expressing population different
from macrophages has been described to accumulate in the
peritoneal lavage after mesothelium injury [18]. In order to
determine the contribution of the accumulation of the pre-
cursor population, it would be necessary to perform func-
tional studies for example using mesothelin-deficient mice.
Mesothelin-deficient mice have a normal phenotype [54]
and to our knowledge no study has been performed using
mesothelin-deficient mice exposed to asbestos to check
whether mesothelin deficiency would affect tumor devel-
opment. However, to address this question it should be kept
in mind that the penetrance of the disease after exposure to

Fig. 6 Increase in Arg1-positive cells in both inflamed mesothelial and
tumor tissues. a Relative expression of Arg1 was verified by q-PCR.
Arg1 was highly increased in crocidolite-exposed tissue and expres-
sion was maintained in tumors Mean ± SE. N= 5–8 mice. *p < 0.05,
**p < 0.01, Mann–Whitney test compared to sham. Arginase 1 (Arg1)-
positive cells were detected in the tumors. b Marker genes for self-

renewing macrophages [41] shows increased expression in crocidolite-
exposed tissues and tumors. c Kaplan–Meier graph of tumor-free mice
survival after challenging with RN5 mesothelioma cells (1 × 106) mice
exposed to asbestos that had not developed a tumor until 49 weeks
after the first exposure to asbestos vs. naïve animals. d Goldner
staining of mesothelioma grown in naïve vs. asbestos-exposed mice
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asbestos fibers in C57BL/6J genetic background is unex-
pectedly low (10% in this study using Nf2 heterozygotes
mice), consistent with other studies [55, 56], therefore fur-
ther refinements of the model would be necessary before
starting such an investigation.

One of the highest upregulated genes after exposure to
asbestos was Arg1 consistent with the observation of a
CD90/Arginase-1-positive mesothelial cell population, able
to inhibit T cell activation, within intraperitoneal cells
recovered from human samples [57]. Therefore, it seems
possible that mesothelial cells themselves contribute to
immunosuppressive signaling.

Although an asbestos signature was present in pre-
neoplastic tissues, some mice did not develop a tumor but
maintained the predisposition to promote tumor growth
highlighting the importance of the environment. This is also
supported by the observation that <50% of human meso-
thelioma grow in NOD/SCID mice [58], (Felley-Bosco,
unpublished), possibly due to an unfavorable growth
microenvironment. As mentioned previously, macrophages
are recruited to the site of damage after administration of a
single dose of asbestos fibers [2] and it has been recently
confirmed that this population is the most abundant after
intraperitoneal administration of asbestos in C57Bl/6J mice
[55]. A role for macrophages in asbestos-related chronic
inflammation had been suggested in studies, where “fru-
strated phagocytosis” induced by exposure of macrophages
to asbestos increased the secretion of mature interleukin-1β
by activating the complex Nod-like receptor-pyrin-domain-
containing-3 (Nlrp3), procaspase-1, and the apoptosis
speck-like protein containing a CARD-adapter (Asc), which
bridges interactions between the former proteins [59]. In
later studies, interleukin-1β production was significantly
decreased in the Nlrp3-deficient mice or Asc hemizygote
mice after the administration of asbestos, but mice displayed
a similar incidence of malignant mesothelioma as wild-type
mice [60, 61], although in Asc hemizygote mice a delay in
mesothelioma appearance was observed. Because Asc
forms complexes not only with NLRP3 but also, e.g., with
AIM2 [62], which senses DNA breaks, it might be worth to
investigate whether AIM2 deficiency has an influence on
mesothelioma development. Indeed, in another mesothe-
lioma model induced by asbestos in Nf2+/−; Cdkn2a+/−
mice in a FVB genetic background, blockage of IL-1β using
IL1β receptor antagonist anakinra delayed mesothelioma
development [61], indicating a promoting role of IL1β.

Besides experimental models, tumor-associated macro-
phages are a major component of the immune cell infiltra-
tion of the tumor microenvironment in mesothelioma
patients and the presence of “M2”-polarized macrophages is
associated with the worst outcome [63, 64]. Recent studies
have demonstrated that pleural effusions contain “M2”-
polarized macrophages [65, 66], which inversely correlated

with T cell in vivo and suppressed T-cell proliferation
in vitro [66]. This is consistent with recently described
recruitment after tissue injury of cavity macrophages, which
then become “M2” polarized [67]. This would also be
consistent with the resident macrophage self-renewal sig-
nature that we observed in our study.

In conclusion, our comprehensive analysis of loss of
homeostasis in the mesothelial environment in asbestos-
exposed mice during tumor development suggest a pro-
gressive activation of YAP/TAZ-dependent gene tran-
scription, RNA-editing accumulation of single nucleotide
variations and a possible role for immunosuppressive
macrophages and/or mesothelial precursor cells in tumor
development.

Material and methods

Experimental model

C57Bl/6J and B6;129S2-Nf2tm1Tyj/J (https://www.jax.org/
strain/008190) mice were obtained from Jackson Labora-
tories (Bar Harbor, Maine). Nf2+/− mice were backcrossed
for ≥6 generations on a C57Bl/6J genetic background. All
experiments were performed with permission of the local
animal care committee (Canton of Fribourg, Switzerland)
and according to the present Swiss law. Unio Internationale
Contra Cancrum (UICC)-grade crocidolite asbestos was
obtained from SPI Supplies (West Chester, PA). Fibers
were suspended in sterile NaCl (0.9%) triturated ten times
through a 22-Gauge needle to obtain a homogenous sus-
pension and injected (400 µg/mouse) into 6–8-weeks-old
mice (n= 50, 33 male, 17 female), every 3 weeks for a total
of eight rounds. Sham mice (n= 37, 19 male, 18 female)
were injected with saline. Mice were monitored for tumor
formation and sacrificed either 33 weeks after the first
crocidolite injection or some animals that had remained
tumor-free were used in a challenging experiment 49 weeks
after the first exposure to asbestos. RN5 cells (1 × 106),
which were derived from one of the tumors [68], were
injected s.c. and development of tumor growth was recor-
ded. Complete necropsies were performed on mice eutha-
nized by inhalation of CO2 collecting peritoneal lavage,
scraped mesothelium, spleen, liver, diaphragm, and tumor
masses. Histopathological diagnosis and analysis was per-
formed on paraffin-embedded samples.

Flow cytometry

The abdominal cavity was washed with 10 ml of phosphate-
buffered saline (PBS). Cells obtained by this procedure
were pelleted and supernatant was removed and stored at
–80 °C for later cytokine analysis. Spleens were placed into
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ice-cold PBS containing 1% FBS. All samples were passed
through 70 μm cell strainer to achieve single cells. ACK
lysis buffer (Invitrogen, Carlsbad, CA) was added to spleen
samples. Flow cytometer analysis was carried out as pre-
viously described [12] with the following antibodies: MHC
II (I-A, Clone: NIMR-4), CD68 (LSBio, Seattle, WA)-
FITC, F4/80 (Clone: BM8)-APC, CD34 (Clone: RAM34;
BD Pharmagen)-PE, CD90.1 (Thy-1, Clone: HIS51; BD
Pharmagen)-APC, mesothelin (MSLN, Clone: 295D;
LSBio)-PE, mesothelin (MSLN, clone 295D and clone 35B,
rat IgG2ak primary unconjugated; MBL Medical & Biolo-
gical Laboratories Co., Japan), CD3e (clone: 145-2C11)-
PE-Cy7, CD4 (clone: RM4-5)-PE, CD8α (clone: 53-6.7)-
APC and CD20 (Clone: AISB12)-PE. All antibodies and
isotypes were purchased from eBioscience or BioLegend
(San Diego, CA) otherwise stated elsewhere. Both anti-
mesothelin antibodies used in this study were derived using
as antigen oncostatin-dependent intraembryonic aorta-
gonad-mesonephros region-derived LO cells [69]. Clo-
neB35 has been recently thoroughly characterized [70] and
provided the same profile as clone 295D (Supplementary
Figure 9).

Immunohistochemistry

Immunohistochemistry was performed as previously
described [71] using the following antibodies: anti-wide
spectrum Cytokeratin (Ab9377), vimentin (Ab92547),
podoplanin (clone 8.1.1), WT-1 (sc-192), mesothelin (mAb
295D), YAP (4912), Ki-67 (GTX16667), arginase I (clone
H-52), and F4/80 (123102).

Measurement of cytokines/chemokines

Peritoneal lavage fluids were concentrated by ultrafiltration
through a low-adsorption polyethersulfonate (PES) mem-
brane (mol. mass. cutoff 3 kDa, concentrator Pierce PES
3K, Thermofisher). The concentration factor was noted for
each fluid and used in the calculation of the results. The
average concentration factor was 7 with a range from 4 to
10 and it was used to calculate non-concentrated levels. A
Bio-Plex mouse cytokine assay (BioRad) for simultaneous
quantification of the concentrations of several signaling
molecules (IL-6, IL-10, G-CSF, GM-CSF, IFN-γ, CXCl1,
CCL2, CCL5, and VEGF) was run according to the
recommended procedure.

Library preparation, cluster generation, and
sequencing

The quantity and quality of the isolated RNA was deter-
mined with a Qubit® (1.0) Fluorometer (Life Technologies,
California, USA) and a Bioanalyzer 2100 (Agilent,

Waldbronn, Germany). The TruSeq Stranded mRNA
Sample Prep Kit (Illumina, Inc., California, USA) was used
in the succeeding steps. Briefly, total RNA samples (100
ng) were ribosome depleted and then reverse-transcribed
into double-stranded cDNA with actinomycin added during
first-strand synthesis. The cDNA samples were fragmented,
end-repaired, and polyadenylated before ligation of TruSeq
adapters. The adapters contain the index for multiplexing.
Fragments containing TruSeq adapters on both ends were
selectively enriched with PCR. The quality and quantity of
the enriched libraries were validated using Qubit® (1.0)
Fluorometer and the Bioanalyzer 2100 (Agilent, Wald-
bronn, Germany). The product is a smear with an average
fragment size of ~360 bp. The libraries were normalized to
10 nM in Tris-HCl 10 mM, pH 8.5 with 0.1% Tween 20.

The TruSeq SR Cluster Kit v3-cBot-HS or TruSeq PE
Cluster Kit v3-cBot-HS (Illumina, Inc., California, USA)
was used for cluster generation using 8 pM of pooled nor-
malized libraries on the cBOT. Sequencing was performed
on the Illumina HiSeq 2000 paired end at 2 × 101 bp or
single end 100 bp using the TruSeq SBS Kit v3-HS (Illu-
mina, Inc., California, USA). Adapter sequences are avail-
able upon request. RNA-seq data are deposited in the
European Nucleotide Archive (http://www.ebi.ac.uk/ena/da
ta/view/PRJEB15230).

RNA-seq analysis

Read data were quality controlled with Fastqc and Fas-
tqScreen to confirm that reads are of high quality and free of
contaminants. Read-alignment was done using the STAR-
aligner [72]. As reference we used the Ensembl genome
build GRCm38.p3. Gene expression values were computed
with the function featureCounts from the R package Rsu-
bread [73]. Differential expression was computed using the
generalized linear model implemented in the Bioconductor
package DESeq2 [74].

Variant analysis was performed using the GATK (soft-
ware.broadinstitute.org) software following the RNA-seq
best practices. Specifically, we looked at variants on tran-
script regions and ignored sites with <2 reads supporting the
SNV. We also excluded variants in Ig loci since they are
generated by well known somatic hypermutation mechan-
isms which would be a potentially confounding effect. In
order to identify A to G mutation due to RNA-editing
events, predicted A to I sites from http://rnaedit.com/dow
nload/ were translated to mm10 coordinates. Gene set
expression enrichment analysis was performed using online
available software (http://software.broadinstitute.org/gsea/
msigdb/index.jsp) [31].

Expression changes in mouse tumors compared to non-
tumor tissues were compared to expression changes in the
study GSE51024 [38] which compared mesothelioma
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tumors vs. normal tissue. The analysis was performed with
Geo2R, which makes use of the R/Bioconductor package
limma. Log2 fold changes, nominal p values, and
Benjamini–Hochberg FDR were calculated by Geo2R/
Limma.

FPKM data corresponding to gene symbols within given
GO terms were retrieved from the normalized data frame, if
the p value was <0.01 and the absolute value of the log2-
ratio was >1 for the comparison among tum and asbestos-
exposed tissue and mean FPKM was greater than 1 in at
least one of the three sample groups.

Selected gene expression analysis (primers in Supple-
mentary Table 4) was performed as previously described
[71].

Investigation of RNA editing

Expression of ADAR and ADARB1 was investigated by
western blot analysis performed as previously described
[75] using anti-ADAR (HPA003890) and anti-ADARB1
(HPA018277) antibodies (Sigma Life Science) in NCI-
H226 (from ATCC) and SPC111 mesothelioma cells
(authenticated by STR profiling) grown as previously
described [76]. Cells are routinely screened for mycoplasma
contamination. Azin1 RNA editing was characterized using
a recently developed sensitive RNA editing site-specific
quantitative RT_PCR [23] after ADAR or
ADARB1 silencing achieved using Dharmacon reagents as
previously described [36].

Bap1 and Nf2 characterization in tumor cells

Relative quantification of gene Bap1 and Nf2 copy number
[28] was evaluated using genomic DNA from RN5-tumor
cells compared to non-tumor cells (primers are listed in
Supplementary Table 5). Protein levels were evaluated by
western blot using anti Nf2 (sc-332) and anti-Bap1 (Sc-
28383) antibodies (Santa-Cruz).

Statistical analysis

Each study was designed to use the minimum number of
mice required to obtain informative results (meaning
quantitative data amenable to statistical analysis) and suf-
ficient material for subsequent studies such as cytokine
determination, immunohistochemistry, and expression pro-
filing. No specific statistical tests were used to predetermine
the sample size; our previous experience with subcutaneous
tumor models and pilot experiments provided guidance
about the adequate number of mice that would provide
significant results. Typically, we employed experimental
cohorts of at least five to six mice. In several cases, more
mice were enrolled to provide sufficient material for

independent analysis involving different procedure (for
example cytokine determination, histology, RNA analysis).
Unpaired Student’s t-test, Mann–Whitney U or
Kruskal–Wallis and Fisher’s Exact test were generally used.
Error bars indicate the standard error of the mean. Statistical
analysis was performed using Prism 6 (Graphpad).
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